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ABSTRACT

We have studied small scale (2′) spatial variation of the diffuse UV radiation

using a set of 11 GALEX deep observations in the constellation of Draco. We

find a good correlation between the observed UV background and the IR 100 µm

flux, indicating that the dominant contributor of the diffuse background in the

field is the scattered starlight from the interstellar dust grains. We also find

strong evidence of additional emission in the FUV band which is absent in the

NUV band. This is most likely due to Lyman band emission from molecular

hydrogen in a ridge of dust running through the field and to line emissions from

species such as C IV (1550 Å) and Si II (1533 Å) in the rest of the field. A

strong correlation exists between the FUV/NUV ratio and the FUV intensity in

the excess emission regions in the FUV band irrespective of the optical depth of

the region. The optical depth increases more rapidly in the UV than the IR and

we find that the UV/IR ratio drops off exponentially with increasing IR due to

saturation effects in the UV. Using the positional details of Spitzer extragalactic
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objects, we find that the contribution of extragalactic light in the diffuse NUV

background is 49 ± 13 photons cm−2 sr−1 s−1 Å−1 and is 30 ± 10 photons cm−2

sr−1 s−1 Å−1 in the FUV band.

Subject headings: dust, extinction - scattering - ultraviolet: ISM

1. INTRODUCTION

Studies of the diffuse ultraviolet (UV) sky have been an important part of interstellar

dust studies over the last four decades (Bowyer 1991; Henry 1991; Murthy 2009) but were

limited by the difficulty of observing faint diffuse sources near the limit of the instrumental

sensitivity. It has been generally agreed that the low and mid-latitude diffuse radiation is

dominated by the scattering of starlight by interstellar dust but with a baseline at high

galactic latitudes, which was variously attributed to either high latitude dust (Bowyer 1991)

or to an extragalactic source (Henry 2002).

Just as the Infrared Astronomy Satellite (IRAS) revolutionized the study of the dif-

fuse infrared (IR) emission (Low et al. 1984), data from the Galaxy Evolution Explorer

(GALEX) have the potential to change our view of the diffuse UV sky. We have begun an

ambitious effort to map the diffuse background in all GALEX deep observations (exposure

time ≥ 5000 sec) with the first of these being observations of a region of nebulosity first

observed by Sandage (1976) (hereafter ‘Region I’), later identified as a nearby molecular

cloud MBM 30 (Magnani et al. 1985). This region has a comparatively high optical depth

in the UV (0.8 ≤ τ ≤ 3.3) and we found a flat UV emission (Sujatha et al. 2009) despite

the IR 100 µm emission increasing by a factor of 2.

In this work, we examine a set of observations of a region in Draco, where the optical

depth is much lower (τ < 0.5) but where there is a ridge of dust extending through the

field. As with the Region I observations of Sujatha et al. (2009), this field is at high Galactic

latitude (33◦ - 37◦) but is about 60 degrees away at a longitude of about 88◦. The data are

from the GALEX Deep Imaging Survey (DIS), a few of them overlapping with the Spitzer

First Look survey1. Combining these two studies we present here the nature of diffuse UV

radiation from low optical depth to high optical depth region.

1See http://ssc.spitzer.caltech.edu/fls/
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2. OBSERVATION AND DATA ANALYSIS

The GALEX spacecraft was launched in 2003 under NASA’s Small Explorer (SMEX)

program with a primary science objective of observing star formation in galaxies at low

redshifts (Martin et al. 2005). Light from the sky is collected through a single 50 cm telescope

and separated into two bands (far ultraviolet (FUV): 1350 - 1750 Å; near ultraviolet (NUV):

1750 - 2850 Å) using a dichroic mirror. Independent low noise delay-line detectors record

every photon in each band with an overall effective spatial resolution of 5 – 7′′ in the sky

over a 1.25◦ field. The data products from the mission include, amongst other files, Flexible

Image Transport System (FITS) (Wells et al. 1981) images of the FUV and NUV fields

and a list of point sources in each field. A complete description of the data processing, the

calibration and the data products may be found in Morrissey et al. (2007).

This work follows our study (Sujatha et al. 2009) on GALEX observations of diffuse

emission in Region I and focuses on a set of 11 observations covering an area about 10

square degrees in the constellation of Draco, with cumulative exposure times of 3,000 to

50,000 seconds (Table 1). These observations were taken by the GALEX team as part of

a program to map the Space Infrared Telescope Facility (SIRTF: now the Spitzer Space

Telescope) First Light locations - hence the target name of “SIRTFFL”. This region (Fig. 1)

contains the high velocity cloud (HVC) Complex C (Miville-Deschenes et al. 2005) at a

distance of more than 800 pc but also, more relevant to our data, the nearby (60 pc) cloud

LVC 88+36-2 (Lilienthal et al. 1991), seen as a ridge in the IR emission. This cloud was

first discovered to cast a shadow in the X-ray background (Burrows & Meadenhall 1991).

Because of the then upcoming Spitzer observations, Lockman & Condon (2005) mapped the

region in the 21 cm line of H I, finding several components (Table 2). This wealth of detail

has proven invaluable to our understanding of the UV observations.

Each observation is comprised of a number of visits spread over a period of months,

or even years, all of which are coadded by the standard GALEX pipeline (Morrissey et al.

2007) to produce a single image in each of the two bands. Point sources in each image were

extracted by the GALEX team using a standard point source extractor (SExtractor - Bertin

& Arnouts (1996)) and a merged point source catalog was created. We note here that the

exposure time in the FUV detector was often significantly less than that in the NUV because

of intermittent power supply problems. Our processing uses the FITS image files and the

merged point source catalog from the GALEX pipeline. These image files have been fully

calibrated and flat fielded but not background subtracted. Although the GALEX program

does provide files containing the background in each observation, these were made by fitting

a multi-dimensional surface to the image and therefore show structure related to the pinning

points of the surface. While perhaps adequate for their intended purpose of subtracting the
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background from point sources in the field, they introduce large scale artifacts which make

them unsuitable for the study of the diffuse radiation field.

Following Sujatha et al. (2009), we created our own background files for each observation

by blanking out the point sources in the merged GALEX point source catalog and binning

the observation into 2′ pixels (80 × 80 GALEX pixels). These images form the starting point

of our analysis. Because of edge effects, we only used the central 1.15◦ of the 1.25◦ field of

view for the analysis, rejecting about 20% of the total number of pixels. These background

files are comprised of the foreground emission (instrumental dark count, airglow and zodiacal

light) and the astrophysical signal (atomic and molecular emission, dust scattered starlight

and any extragalactic contribution).

3. FOREGROUND EMISSION

A large field of view imager such as GALEX has distinct advantages in observations of

the diffuse background in that stars can be easily identified and rejected. However, without

spectra, we can only infer the contribution of the different components of the diffuse radiation

field. Instrumental dark count is negligible, contributing less than 5 photons cm−2 sr−1 s−1

Å−1 in either band (Morrissey et al. 2007) but airglow, primarily due to the O I lines at

1356 Å and 2471 Å, is expected to contribute about 200 photons cm−2 sr−1 s−1 Å−1 to either

band (Boffi et al. 2007). Although we cannot extract the airglow contribution directly, we

have been able to use the Telemetered Event Counter (TEC) of the spacecraft to track the

total number of counts as a function of orbital time. Assuming the time dependent part

of TEC present in both the GALEX bands as the total foreground emissions, a baseline

has been subtracted from each visit so that the count rate is zero at local midnight. The

remaining variable component of airglow (AGv) is well fit with a quadratic as a function of

time from local midnight (Fig. 2).

In addition, we have found that the baseline levels at local midnight are strongly cor-

related with the 10.7 cm solar flux2 (Fig. 3) which is used as a proxy for solar-terrestrial

interactions (Chatterjee & Das 1995). Each observation is comprised of several visits, each

of which may have a different airglow and zodiacal light contribution. We have estimated

and subtracted the zodiacal light from each visit’s baseline level and found the y-intercept

for each observation, corresponding to stars in the field and the diffuse cosmic background.

These values have been subtracted from the individual baseline levels and the resultant val-

ues, assumed as the constant airglow (AGc) in each visit, are plotted in Fig. 3. Combining

2http://www.dxlc.com, http://www.spaceweather.ca



– 5 –

these two results (i.e., AGc + AGv) allow us to calculate the total airglow (AG) as a function

of local time (t, hours from local midnight) and solar 10.7 cm flux (SF, in 104 Jy) with the

following equations, with an uncertainty of about 50 photons cm−2 sr−1 s−1 Å−1.

FUV AG = 3.4 SF + 24.5 t2 + 11.6 t (1)

NUV AG = 3.7 SF + 16.1 t2 + 5.9 t (2)

This emission is consistent with an origin of the airglow in solar photons resonantly scattered

from geocoronal oxygen atoms (L. J. Paxton, personal communication). It should, however,

be noted that Brune et al. (1978) observed a much lower level of airglow emission with a

scaled GALEX contribution of about 50 photons cm−2 sr−1 s−1 Å−1 from their rocket-borne

spectroscopic observation. It is possible that some part of what we have euphemistically

called “airglow”, may be due to some other contributor (Henry et al. 2010).

The remaining foreground contributor, zodiacal light, is important only in the NUV

band because of the rapidly fading solar spectrum at wavelengths shorter than 2000 Å.

Although there is no UV map of the zodiacal light, we have used the distribution in the

visible with grey scattering (Leinert et al. 1998) to predict the zodiacal light in each visit3.

The foreground emission (Table 3), ranges from 20% to 50% of the total emission with an

uncertainty of about 30 photons cm−2 sr−1 s−1 Å−1, estimated using the spatial overlap

between different observations. It should be emphasized that the foreground emission affects

only the level of the offset and will not affect the spatial variability of the diffuse radiation

field.

3.1. Scatter in the Data

More interesting is the scatter in the data. For a photon counting instrument such as

GALEX, the instrumental scatter will be either due to photon noise or to errors in the flat

fielding (calibration) of the instrument. We have empirically derived the instrumental scatter

by dividing each observation into two sets of visits, which may well be separated by several

months. There is excellent agreement between this and the intrinsic photon noise (Fig. 4),

confirming that the errors are dominated by poissonian rather than instrumental effects.

As an independent test, we also took the overlap regions between different observations

and calculated the scatter between them. Although the scatter for the overlap regions is

somewhat higher than the calculated values, this is due to the many fewer points in the

overlap regions and their location near the edge of the detector. We note here that all our

3calculator at http://tauvex.iiap.res.in/htmls/tools/zodicalc/
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comparisons are in sky coordinates because there are arbitrary roll angle differences between

different visits, which do not allow a comparison between physical detector pixels.

4. RESULTS AND DISCUSSION

The FUV and NUV images of the Spitzer “First Look” field obtained after subtraction

of the foreground emission are shown in Fig. 5 at a spatial resolution of 2′. The UV images

of Fig. 5 may be compared with the IR 100 µm map (Fig. 1). There are several possi-

ble contributors to the astrophysical UV emission, a significant one being, dust-scattered

starlight which contributes to both the FUV and the NUV bands. This is reflected in the

good correlation between the FUV and NUV bands (Fig. 6) and between the two UV bands

and the IR 100 µm fluxes (Fig. 7). This is in contrast with the essentially flat UV-IR curves

obtained by Sujatha et al. (2009) in Region I. The IR emission is due to thermal radiation

from an optically thin layer of dust, as the cross-section of the grains is low in the IR. On the

other hand, the cross-section of the grains is much higher in the UV and the optical depth

transitions from being optically thin in these Draco observations to being optically thick in

Region I.

In Fig. 8, we have plotted the ratio between the UV bands and the IR to understand

the nature of diffuse UV emission with optical depth. There is a clear trend visible from

the low optical depth Draco region to the high optical depth (in the UV) Region I with an

empirical formula of
FUV

FIR

= 415 e−0.22×FIR.

It is interesting to note that the FUV /FIR ratio in our GALEX data follows a continuous

curve very similar to that found by Murthy et al. (2001) in Orion using data from the

Midcourse Space Experiment (MSX) even though the UV and the IR fluxes in Orion were

each greater by a factor of about 200, reflecting the intense radiation field there. However,

quite different values are cited in the literature for other regions with ratios ranging from

near -50 to almost 260 photons cm−2 sr−1 s−1 Å−1(MJy sr−1)−1 with little dependence on

the IR (Sasseen et al. (1995); Sasseen & Deharveng (1996)). It is likely that these relations

are only apparent when observed at a high enough spatial resolution; the MSX data were at

a resolution of 20′′ and our data are at a resolution of 2′, while the other observations are

at resolutions of 0.5◦ or worse. Since, both the IR and the UV vary on smaller scales, the

measured FUV /FIR ratio may not be a reliable estimator of the true ratio. In fact, Sasseen

& Deharveng (1996) found a FUV /FIR ratio of 255 photons cm−2 sr−1 s−1 Å−1(MJy sr−1)−1

for the slope using all their data, higher than any of the individual data sets. In general, we

conclude that the FUV /FIR ratio in any region strongly depends on the local effects such as



– 7 –

the proximity of hot stars near the scattering dust and the optical depth.

Readily apparent in both Fig. 7 and Fig. 8 is the ridge of dust (LVC 88+36-2) running

through our field, where the FUV emission is proportionately greater than the NUV. Indeed,

this reflects a general increase in the FUV/NUV ratio with the FUV surface brightness

(Fig. 9) seen here and in Region I. The most likely explanation for this is that there is

an additional component in the FUV band which is not seen in the NUV. Sujatha et al.

(2009) suggested that this is fluorescent Lyman band (1400 - 1700 Å) emission of molecular

hydrogen, a reasonable assumption in Region I where Martin et al. (1990) had already

observed widespread H2 fluorescent emission.

Assuming that the FUV/NUV ratio for dust scattering alone is constant with a value of

0.8 (Fig. 9), we can estimate the level of excess emission in the field. The average error in this

ratio, due to the scatter in the data, is estimated to be ±0.12. Although the excess emission

level in the field is not generally correlated with N(H I) (Fig. 10), there is a strong correlation

in the ridge (LVC 88+36-2), where the excess emission is likely due to H2 fluorescence. We

obtain a reasonable fit to the data following Martin et al. (1990) and calculate the emission

assuming a plane-parallel slab with constant density (Fig. 11). Park et al. (2009) have

observed atomic emission lines of both Si II (1533 Å) and C IV (1550 Å) around the nearby

Draco molecular cloud which would effectively contribute about 50 photons cm−2 sr−1 s−1

Å−1 in the FUV band and it may be that some part of the emission outside the ridge, where

there is no correlation with H I, may be due to atomic lines instead.

4.1. Modeling the Dust Scattered Emission

We have applied our standard three-parameter model of interstellar dust scattering

(Sujatha et al. 2005) to the continuum dust scattered light in Draco. This model has been

described fully by Sujatha et al. (2005) and uses Kurucz models (Kurucz 1992) for the

stars in the Hipparcos catalog (Perryman et al. 1997) to calculate the interstellar radiation

field (Sujatha et al. 2004). This radiation is then scattered from dust in the line of sight,

taking into account self-extinction. The scattering function is from Henyey & Greenstein

(1941) and depends only on the albedo (a) and the phase function asymmetry factor (g = <

cos(θ) >). Typical values for these suggest moderately reflective (a = 0.4), highly forward

scattering (g = 0.6) grains in the UV, in agreement with the predictions for a mixture of

spherical carbonaceous and silicate grains (Draine 2003). On account of the uncertainity of

extragalactic contribution (EGL) in the data, we have considered it as a variable parameter

in the model. A full treatment of the problem would take into account multiple scattering

and clumpiness in the ISM (see, for example, Gordon 2004) but, because the optical depth is
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low (τ < 0.5) in our observations, we have used a single scattering model with no clumping.

Correlation studies between the UV emissions and different components of H I in the region

show that the diffuse emission is correlated maximum with the LVC component of H I, which

is the local cloud at 60 pc, and the addition of any other components such as IVC or HVC

to LVC reduces the correlation. The details (correlation coefficient, r) are given in Table 4.

Hence for these observations, we have assumed scattering from the local clouds at a distance

of 60 pc; very little contribution to the diffuse light comes from the more distant clouds.

With these assumptions, we have placed 1σ limits of 0.45 ± 0.08 on the albedo (a),

0.56 ± 0.10 on g and 58 ± 18 photons cm−2 sr−1 s−1 Å−1 on the EGL in the NUV band

with a reduced χ2 of 1.32. If we use the empirical ratio of 0.8 for the FUV/NUV ratio of the

dust, the best fit NUV values translate into an albedo of 0.32 ± 0.09 and g of 0.51 ± 0.19

in the FUV. These results are in reasonable agreement with previously determined values

(Draine 2003). The scatter in our data is more than can be accounted for by photon noise

alone. We have empirically derived a 1σ error bar of about 40 photons cm−2 sr−1 s−1 Å−1 in

the model fit to the data compared to about 20 photons cm−2 sr−1 s−1 Å−1 from the photon

noise, probably reflecting the incompleteness of the model.

4.2. Contribution from Extragalactic Objects

Spitzer Space Telescope (Werner et al. 2004) made its 67 hours First Look Survey (FLS)

near Draco in 2003 in order to characterize the starlight from distant galaxies in the region

in mid-infrared, using Infrared Array Camera (IRAC; Fazio et al. (2004)) and the Multiband

Imaging Photometer for Spitzer (MIPS; Rieke et al. (2004)). The IRAC survey covered an

area of 3.8 deg2 centered on R.A. 17h18m00s, Dec. +59◦30′00′′ at wavelengths 3.6, 4.5, 5.8

and 8.0 micron, with flux density limits of 20, 25, 100 and 100 µJy (Lacy et al. 2005). This

instrument produced a band merged catalog of the survey containing 103,193 objects with

a positional accuracy of about 0.25′′ for high signal-to-noise objects and about 1′′ at the

flux density limits. The overlap area of IRAC survey is about 38% of the total GALEX

observed area in Draco. We have used this important positional details of IRAC cataloged

sources to estimate the observed EGL contribution in our diffuse maps. Note that the only

expected contribution of EGL in our diffuse maps are from the undetected faint galaxies by

SExtractor, since we have removed all the detected sources using the GALEX catalog from

each of our field.

We find that some IRAC objects are showing enhancement in the UV intensities from

their local background, measured from 2′ bin. In Fig. 12, the average UV intensities of these

objects measured using a diameter of 9′′ (6 pixels) are plotted against the corresponding local
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background. The UV intensities and the corresponding AB magnitudes of these sources are

estimated after subtracting the local background. The total number of such objects detected

in the NUV field is 18,989 in the magnitude range 20.0 – 24.0. The number counts of these

objects (Table 5) are shown in Fig.13. By integrating along the curve, we derived the EGL

contribution in the NUV map as 49 ± 13 photons cm−2 sr−1 s−1 Å−1. The errorbar include

both the uncertainities in the magnitude and the area overlapped by IRAC in the field. It is

interesting to note that this amount is in good agreement with the extracted value of EGL

from the model. We have also found that an accurate estimation of number counts in the

FUV band is difficult due to the excess emission in the field and hence we restricted our

analysis to the NUV band. However, assuming an average ratio of 0.43 between the FUV

and NUV sources derived from Xu et al. (2005) and Hammer et al. (2010) in the magnitude

range 20.0 – 24.0, we estimated the EGL contribution as 30 ± 10 photons cm−2 sr−1 s−1 Å−1

in the FUV map from a total of 8165 objects.

5. CONCLUSIONS

We have completed an analysis of two sets of deep GALEX observations: earlier near

the Sandage reflection nebulosity (Region I) towards MBM 30 (Sujatha et al. 2009) and

now near the Draco Nebula. In both cases, we have found a good correlation between the

signal in the FUV band (1350 – 1750 Å) and the NUV band (1750 – 2850 Å) but with

an additional component in the FUV which is not seen in the NUV. This was identified

as fluorescent emission from the Lyman band of molecular hydrogen in Region I and in the

nearby cloud LVC 88+36-2 in these observations, where the ratio was correlated with the H I
column density. However, there was excess emission throughout the Draco region which was

not correlated (or anti-correlated) with N(H I) and this may be due either to H2 emission

or to line emission from hot gas. While GALEX observations are invaluable in probing the

diffuse background at unprecedented sensitivity and spatial resolution, spectra will still be

necessary to fully understand the observations. However, we strongly recommend that the

FUV/NUV ratio can be used to identify the atomic and molecular emission regions in the

GALEX survey fields all over the sky.

The scattered light from the interstellar dust is consistent with an optically thin layer in

the Draco region transitioning to optically thick in the earlier Region I results, although the

thermal emission in the infrared is optically thin in both cases. The FUV /FIR ratio follows

an exponential curve across both regions, as would be expected for optically thick media.

Interestingly, the FUV /FIR ratio in Orion follows exactly the same curve even though both

the UV and IR values are higher by a factor of almost 200 due to the intense radiation field.
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In general, we find that the FUV /FIR ratio strongly depends on the local effects such as the

proximity of hot stars to the scattering medium and its optical depth.

We have determined optical constants a(0.45 ± 0.08) and g(0.56 ± 0.10) in the NUV

band and a(0.32 ± 0.09) and g(0.51 ± 0.19) in the FUV band for the dust in Draco, largely

consistent with previous observational and theoretical determinations (Gordon 2004). Re-

gardless of the actual value of the optical constants, we find that the ratio between the FUV

and the NUV dust scattered light is 0.8 over a wide range of optical depths (Draco and

Region I). We have also estimated the extragalactic contribution of 58 ± 18 photons cm−2

sr−1 s−1 Å−1 in the NUV band using our model, which is in good agreement with the derived

limit of 49 ± 13 photons cm−2 sr−1 s−1 Å−1 for the band using the Spitzer FLS sources.

This gives strong evidence that most of the diffuse background derived from the GALEX

observations have a Galactic origin specifically at galactic latitudes, | b | < 40◦.

We have begun a massive program to look at the small scale structure of diffuse back-

ground in all GALEX data of greater than 5000 seconds. These include data throughout

the sky and sample a variety of different environments, although avoiding bright UV regions

such as the Coalsack or Orion. In parallel, we are developing more sophisticated models to

better match the high quality data obtained here. We believe the GALEX data will allow us

to place the study of the diffuse UV radiation on the same level as IRAS did for the infrared

cirrus.
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Table 2. H I Components in the Field

Cloud l b Peak N(H I) VLSR

(deg) (deg) (cm−2) (km s−1)

Ridge (LVC) 87.44 35.93 1.8 × 1020 -2

IVC1 89.47 34.25 5.6 × 1019 -41

IVC2 88.82 34.17 5.0 × 1019 -41

IVC3 86.53 33.73 4.4 × 1019 -34

IVC4 (Draco) 89.85 35.60 7.8 × 1019 -23

HVC (Complex C) 89.15 35.20 6.9 × 1019 -190
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Table 3. Airglow and Zodiacal Contribution in Each Field

Tile Name Average Airglow Zodiacal light Total Foreground Emissiona

FUV NUV NUV FUV NUV

(photons cm−2 sr−1 s−1 Å−1)

SIRTFFL-00 391 394 367 396 766

SIRTFFL-01 387 338 407 392 750

SIRTFFL-02 332 314 373 337 692

SIRTFFL-03 318 308 382 323 695

SIRTFFL-04 320 378 342 325 725

SIRTFFL-05 362 440 342 367 787

SIRTFFL-06 306 304 358 311 667

SIRTFFL-07 356 313 381 361 699

SIRTFFL-08 327 304 365 332 674

SIRTFFL-09 333 333 367 338 705

SIRTFFL-10 368 369 365 373 739

Region Ib 349 355 440 354 800

aIncludes 5 photons cm−2 sr−1 s−1 Å−1 dark count.

bTile name: GI1-005007-J092810p702308.
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Table 4. Correlation details of UV emission with different components of N(H I)

Data LVC IVC HVC LVC+IVC LVC+IVC+HVC

FUV Ridge 0.88 0 0 0.84 0.82

FUV Total 0.75 0.3 -0.09 0.70 0.51

NUV Ridge 0.63 0 0 0.63 0.63

NUV Total 0.63 0.27 -0.05 0.63 0.52
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Table 5. Number Counts of Extragalactic Objects present in the NUV diffuse map of

Spitzer field

AB Mag Nobjects Log (Nobjects/deg2/mag)

20.25 14 0.94

20.75 130 1.91

21.25 584 2.56

21.75 1941 3.08

22.25 3288 3.31

22.75 4211 3.42

23.25 4307 3.43

23.75 3904 3.39

24.25 3364 3.32
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Fig. 1.— IRAS map of the region in galactic coordinates. The GALEX field of view of the 11

DIS targets are overplotted as circles with diameter 1.25◦ and marked as 0 to 10. The bright

arc extending through the fields 3 & 10 is the low velocity cloud (LVC 88+36-2) discussed

in the text and the brightest feature on the left top is the Draco Nebula.
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Fig. 2.— Total count rate (TEC, in photons cm−2 sr−1 s−1 Å−1) in the FUV (top) and NUV

(bottom) is plotted against the local time from midnight. A baseline has been subtracted

from each visit so that the count rate is zero at local midnight. The solid line represents the

best fit curve to the data whose quadratic equation is given in the left top of the plot.
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Fig. 3.— Minimum TEC level in each visit at the local midnight is plotted against the

10.7 cm solar flux at the Earth for FUV (top) and NUV (bottom) channel. An offset was

subtracted from each observation (one set of visits). The strong correlation observed here

indicates that the variation in the TEC level within an observation is due to the solar activity.
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Fig. 4.— Comparison of observed scatter and intrinsic photon noise in the data. The symbols

‘filled square’ and ‘x’ represent the scatter when a single observation is broken up into two

sets of visits for each band, respectively, while the symbols ‘asterisk’ and ‘+’ represent the

scatter in the regions of overlap between different observations. In general, the observed

scatter is consistent with photon noise alone with the high points being due to the smaller

area of overlap.
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Fig. 5.— Diffuse FUV (top) & NUV (bottom) images (in photons cm−2 sr−1 s−1 Å−1) of

the region derived from the central 1.2◦ field of view of each GALEX observation. The

foreground emission has already been subtracted from each band.
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Fig. 6.— Correlation between FUV and NUV intensity. The blue points (‘x’) represent

Region I and the black points ‘+’ represent the Draco region. Good correlation between the

FUV and NUV bands indicating that the dominant contributor of the diffuse background in

the field is the scattered starlight from the interstellar dust grains.
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Fig. 7.— Correlation between IRAS 100 micron intensity and diffuse FUV (top) and NUV

(bottom) background radiation. In each plot, the blue points (‘+’) represent the ridge of

dust, the ‘dots’ represent the region outside the ridge and the ‘x’ points represent Region I.

The background radiation is strongly correlated with IR in Draco region but is saturated in

Region I because of the high optical depth in the UV.
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Fig. 8.— UV/IR ratio (in photons cm−2 sr−1 s−1 Å−1(MJy sr−1)−1) as a function of IR 100

µm intensity. The ratio exponentially drops off with IR due to the rapid increase of optical

depth in UV.
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Fig. 9.— Ratio between the UV bands (after subtracting the foreground emissions) is plotted

against the FUV surface brightness. The increase in the ratio with FUV radiation indicates

the presence of excess emission in the FUV band.
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Fig. 10.— Excess FUV emission in the observations is plotted against N(H I) in the LVC

(Lockman & Condon 2005). There is a strong correlation inside the dust ridge where the

excess emission is due to molecular hydrogen fluorescence but a poorer correlation outside

where the excess emission may be due to line emission from C IV or Si II.
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Fig. 11.— Predicted levels of H2 emission with a formation rate (R) of 1 x 10−17 cm−3 s−1 are

plotted against the excess emission in the field. There is reasonable agreement everywhere

but particularly in the nearby cloud LVC 88+36-2.
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Fig. 12.— Comparision of average UV intensity (in continum unit; 1 CU = 1photons cm−2

sr−1 s−1 Å−1) from 9′′ bin and median background from 2′ bin centered at each IRAC object

position in our diffuse maps. The enhancement in some of the IRAC source position indicate

the presence of undetected faint galaxies by the SExtractor in our diffuse maps.
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Fig. 13.— Number counts of extragalactic objects present in the diffuse NUV map of the

Spitzer field. The solid line is the best-fit curve.
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