

GALEX Diffuse UV Background

Richard Conn Henry, Luciana Bianchi, Jayant Murthy, and P Shalima

The Johns Hopkins University

henry@jhu.edu

Baltimore, MD 21218

bianchi@skysrv.pha.jhu.edu

The Indian Institute of Astrophysics

Bangalore, India

भारतीय ताराभौतिकी संस्थान jmurthy@yahoo.com shalima.p@gmail.com

ABSTRACT

We report preliminary investigation of the character of the diffuse ultraviolet background radiation as it is detected using the two ultraviolet cameras on GALEX. The bulk of the signal in most GALEX images is diffuse background, not point The but of the signal in holds USLEA images is faintee ackground, not point sources or galaxies. This diffuse radiation originates in a plethous of sources, including arglow/geoqphysical feters of the sources of the two GALEX cameras, bulknows of the two GALEX cameras), hurvivolet staffact alight cattered from interstellar dust, and additional radiation or parcelar or concent. The source on our examination of the publicly available Deep Imaging Survey targets. Our Guest Investigator targets have been carefully chosen to allow testing of the idea that part of the detected signal may be due to redshifted recombination radiation from the intergalactic medium

Acknowledgements: This work is being supported by the US National Aeronautics and Space Administration, and the Indian Institute of Astrophysics.

#	Name	RA & Dec		ℓ&b		Δt	$E_{\rm B-V}$	FUV mean	FUV	ratio	NUV mean	NUV	ratio	CC
Tar-01	-	0,90	-42,75	331,80	-71,60	13420	0.011	382	277	0,73	970	900	0,89	0.68
Dis-01	ELAISSI 01	9.32	-42,97	312,36	-73,90	15701	0,008	359	284	0,79	991	945	0,93	0,24
Dis-02	ELAISSI 00	9.64	-43,99	310.89	-72,94	16163	0.007	411	411	1.00	1020	1014	0,99	0.64
Dis-03	ELAISSI 07	10,36	-42,25	310,03	-74,74	5047	0.012	462	412	0.89	1128	1081	0,94	0.05
Dis-04	ELAISSI 02	11.08	-43,85	307.41	-73.22	6032	0,008	397	421	1.06	1023	1003	0,97	0,51
Dis-05	CDFS 01	52,01	-28,21	224,04	-55,47	31976	0.009	424	40.5	0,96	1004	962	0,94	0.27
Dis-06	CDFS 00	53,13	-27.87	223,70	-54,44	44668	0,008	454	483	1.06	1058	1046	0,98	0.17
Dis-07	ELAISNI 00	243,41	54,98	84,73	44.27	7899	0,008	741	668	0,90	1181	1165	0,98	0,12
Dis-08	SIRTFFL 03	258,33	58,87	87.64	35,55	5558	0,029	1109	470	0.42	1391	1132	0.75	0,79
Dis-09	SIRTFFL 00	259,13	59,91	88,86	35,04	23765	0.022	990	876	0.89	1348	1305	0,96	0,14
Dis-10	SIRTFFL 02	260,11	58,50	87.10	34,66	2803	0.028	1113	1066	0,96	1502	1380	0.89	0,16
Dis-11	SIRTFFL 01	260,42	59.34	88,10	34,44	23 59 1	0.027	1037	312	0.30	1374	1079	0.71	0,48
Dis-12	CFHTLSD4	333,78	-17.94	38,92	-52,91	20080	0.027	470	274	0.58	1425	1287	0.87	0,31
Dis-13	VVDS22H	334,43	0.67	63,55	-43,77	14847	0,062	1075	371	0.35	1624	1373	0.80	0.57
Dis-14	UVE A2670	358,54	-10,40	81,33	-68,51	6876	0.037	488	220	0.45	1345	1259	0.91	0,40

Conclusion: There is a strong correlation (0.94) between the FUV and NUV images of dis.08, but NOT dis.09 (0.14): see the Mathematica dis.09 FUV and NUV images below! And, there is no correlation of the dis.09 brightness with E(B-V) (see plot). So, we can firmly conclude that the diffuse UV background at dis.09 (and at many other locations; see table) is NOT due to starlight that is scattering from interstellar dust. We hope our planned future observations will reveal the origin of this radiation.

Heartfelt thanks to the superb GALEX team for a great pipeline background measure!